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• Parametric optimization

• Computational geometry features

• MPC synthesis (regulation, tracking)
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Optimization in the loop
Classical control loop:

Plant
Optimizer




Measurements 

Output  Input  Reference  

PlantG(s)

Measurements 

Output  Input  Reference 

The classical controller is replaced by an optimization algorithm:

Plant
Optimizer




Measurements 

Output  Input  Reference  

PlantG(s)

Measurements 

Output  Input  Reference 

The optimization uses predictions based on a model of the plant.
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Optimization-based control: Motivation

Objective:
• Minimize lap time

Constraints:
• Avoid other cars
• Stay on road
• Don’t skid
• Limited acceleration

Intuitive approach:
• Look forward and plan

path based on
• Road conditions

• Upcoming corners

• Abilities of car

• etc...

MPC Ch. 1 - Introduction and Overview 5 1 – Optimization based Control



Optimization-Based Control: Motivation

Minimize (lap time)
while avoid other cars

stay on road
...

• Solve optimization problem
to compute minimum-time
path

MPC Ch. 1 - Introduction and Overview 6 1 – Optimization based Control



Optimization-Based Control: Motivation

Minimize (lap time)
while avoid other cars

stay on road
...

• Solve optimization problem
to compute minimum-time
path

• What to do if something
unexpected happens?
• We didn’t see a car around

the corner!

• Must introduce feedback

MPC Ch. 1 - Introduction and Overview 7 1 – Optimization based Control



Optimization-Based Control: Motivation

Minimize (lap time)
while avoid other cars

stay on road
...

• Solve optimization problem
to compute minimum-time
path

• Obtain series of planned
control actions

• Apply first control action
• Repeat the planning procedure

MPC Ch. 1 - Introduction and Overview 8 1 – Optimization based Control



Model Predictive Control

P(s)%

Objectives Model Constraints

Plant
Optimizer




Measurements 

Output  Input  Reference  

Objectives Model Constraints

PlanDo

PlanDo

PlanDo
Time

Receding horizon strategy introduces feedback.

MPC Ch. 1 - Introduction and Overview 9 1 – Optimization based Control



Two Different Perspectives

Classical design: design C

Dominant issues addressed
• Disturbance rejection (d ! y)
• Noise insensitivity (n ! y)
• Model uncertainty

(usually in frequency domain)

MPC: real-time, repeated optimiza-
tion to choose u(t) – often in super-
visory mode

Dominant issues addressed
• Control constraints (limits)
• Process constraints (safety)

(usually in time domain)

MPC Ch. 1 - Introduction and Overview 11 2 – Concept of MPC



Constraints in Control
All physical systems have constraints:

• Physical constraints, e.g. actuator limits
• Performance constraints, e.g. overshoot
• Safety constraints, e.g. temperature/pressure limits

Optimal operating points are often near constraints.

Classical control methods:
• Ad hoc constraint management
• Set point sufficiently far from constraints
• Suboptimal plant operation

Predictive control:
• Constraints included in the design
• Set point optimal
• Optimal plant operation

Optimal Operation and Constraints

PSfrag replacements

constraint

set point
time

ou
tp

ut Classical Control
No knowledge of constraints

Set point far from constraints

Suboptimal plant operation

PSfrag replacements

constraint

set point
time

ou
tp

ut Predictive Control

Constraints included in design

Set point closer to optimal

Improved plant operation
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MPC: Mathematical Formulation

U?t (x(t)) := argmin
Ut

N�1X

k=0

q(xt+k , ut+k)

subj. to xt = x(t) measurement

xt+k+1 = Axt+k + But+k system model

xt+k 2 X state constraints

ut+k 2 U input constraints

Ut = {ut , ut+1, . . . , ut+N�1} optimization variables

Problem is defined by

• Objective that is minimized
• Internal system model to predict system behavior
• Constraints that have to be satisfied

MPC Ch. 1 - Introduction and Overview 13 2 – Concept of MPC



MPC: Mathematical Formulation

argmin
Ut

N�1X

k=0

q(xt+k , ut+k)

subj. to xt = x(t)

xt+k+1 = Axt+k + But+k

xt+k 2 X , ut+k 2 U

Plant
u?t

Plant State x(t)

Output y(t)

At each sample time:

• Measure / estimate current state x(t)
• Find the optimal input sequence for the entire planning window N:

U?t = {u?t , u?t+1, . . . , u?t+N�1}
• Implement only the first control action u?t

MPC Ch. 1 - Introduction and Overview 14 2 – Concept of MPC



Predictive Control in NeuroScience

MPC Ch. 1 - Introduction and Overview 58 3 – Applications

YouTube:  Charlie Rose Brain Series: The Acting Brain



Important Aspects of Model Predictive Control
Main advantages:

• Systematic approach for handling constraints
• High performance controller

Main challenges:

• Implementation
MPC problem has to be solved in real-time, i.e. within the sampling
interval of the system, and with available hardware (storage, processor,...).

• Stability
Closed-loop stability, i.e. convergence, is not automatically guaranteed

• Robustness
The closed-loop system is not necessarily robust against uncertainties or
disturbances

• Feasibility
Optimization problem may become infeasible at some future time step,
i.e. there may not exist a plan satisfying all constraints

MPC Ch. 1 - Introduction and Overview 66 5 – Summary



History�of�MPC

• A. I. Propoi, 1963, “Use of linear programming methods for synthesizing
sampled-data automatic systems”, Automation and Remote Control.

• J. Richalet et al., 1978 “Model predictive heuristic control- application to
industrial processes”. Automatica, 14:413-428.
• known as IDCOM (Identification and Command)
• impulse response model for the plant, linear in inputs or internal variables

(only stable plants)
• quadratic performance objective over a finite prediction horizon

• future plant output behavior specified by a reference trajectory

• ad hoc input and output constraints

• optimal inputs computed using a heuristic iterative algorithm, interpreted

as the dual of identification

• controller was not a transfer function, hence called heuristic

MPC Ch. 1 - Introduction and Overview 60 4 – History of MPC



History of MPC

• 1970s: Cutler suggested MPC in his PhD proposal at the University of
Houston in 1969 and introduced it later at Shell under the name Dynamic
Matrix Control. C. R. Cutler, B. L. Ramaker, 1979 “Dynamic matrix
control – a computer control algorithm”. AICHE National Meeting,
Houston, TX.
• successful in the petro-chemical industry

• linear step response model for the plant

• quadratic performance objective over a finite prediction horizon

• future plant output behavior specified by trying to follow the set-point as

closely as possible

• input and output constraints included in the formulation

• optimal inputs computed as the solution to a least–squares problem

• ad hoc input and output constraints. Additional equation added online to

account for constraints. Hence a dynamic matrix in the least squares

problem.

• C. Cutler, A. Morshedi, J. Haydel, 1983. “An industrial perspective on
advanced control”. AICHE Annual Meeting, Washington, DC.
• Standard QP problem formulated in order to systematically account for

constraints.

MPC Ch. 1 - Introduction and Overview 61 4 – History of MPC



History of MPC

• Mid 1990s: extensive theoretical effort devoted to provide conditions for
guaranteeing feasibility and closed-loop stability

• 2000s: development of tractable robust MPC approaches; nonlinear and
hybrid MPC; MPC for very fast systems

• 2010s: stochastic MPC; distributed large-scale MPC; economic MPC

MPC Ch. 1 - Introduction and Overview 62 4 – History of MPC
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Outline

1. Introduction

2. Finite Horizon

3. Receding Horizon

4. Infinite Horizon
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General Problem Formulation (1/2)
Consider the nonlinear time-invariant system

x(t + 1) = g(x(t), u(t))

subject to the constraints

h(x(t), u(t))  0,8t � 0

with x(t) 2 Rn and u(t) 2 Rm the state and input vectors. Assume that
g(0, 0) = 0, h(0, 0)  0.
Consider the following objective or cost function

J0!N(x0, U0!N�1) := p(xN) +
N�1X

k=0

q(xk , uk)

where

• N is the time horizon,
• xk+1 = g(xk , uk), k = 0, . . . , N � 1 and x0 = x(0),
• U0!N�1 :=

⇥
u
>
0 , . . . , u>N�1

⇤> 2 Rs , s = mN,
• q(xk , uk) and p(xN) are the stage cost and terminal cost, respectively.

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 6 1 – Introduction



General Problem Formulation (2/2)
Consider the Constrained Finite Time Optimal Control (CFTOC) problem.

J
?
0!N(x(0)) := min

U0!N�1
J0!N(x(0), U0!N�1)

subj. to xk+1 = g(xk , uk), k = 0, . . . , N � 1

h(xk , uk)  0, k = 0, . . . , N � 1

xN 2 Xf

x0 = x(0)

• Xf ⇢ Rn is a terminal region.
• X0!N ⇢ Rn is the set of feasible initial conditions x(0).
• The optimal cost J

?
0!N(x0) is called value function.

• Assume that there exists a minimum.
• denote by U

?
0!N one of the minima.

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 7 1 – Introduction



Objectives

• Finite Time Solution
• a general nonlinear programming problem (batch approach)

• recursively by invoking Bellman’s Principle of Optimality (recursive

approach)

• discuss in details the linear system case

• Infinite Time Solution. We will investigate
• if a solution exists as N !1
• the properties of this solution

• approximate of the solution by using a receding horizon technique

• Uncertainty. We will discuss how to extend the problem description and
consider uncertianty.

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 8 1 – Introduction



Outline

1. Introduction

2. Finite Horizon

3. Receding Horizon

4. Infinite Horizon
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Linear Quadratic Optimal Control

• In this section, only linear discrete-time time-invariant systems

x(k + 1) = Ax(k) + Bu(k)

and quadratic cost functions

J0(x0, U) := x
>
N PxN +

N�1X

k=0

(x>k Qxk + u
>
k Ruk) (1)

are considered, and we consider only the problem of regulating the state
to the origin, without state or input constraints.
• The two most common solution approaches will be described here

1. Batch Approach, which yields a series of numerical values for the input

2. Recursive Approach, which uses Dynamic Programming to compute

control policies or laws, i.e. functions that describe how the control

decisions depend on the system states.

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 20 2 – Finite Horizon



Unconstrained Finite Horizon Control Problem

• Goal: Find a sequence of inputs U0!N�1 := [u>0 , . . . , u>N�1]
> that

minimizes the objective function

J
?
0(x(0)) := min

U0!N�1
x
>
N PxN +

N�1X

k=0

(x>k Qxk + u
>
k Ruk)

subj. to xk+1 = Axk + Buk , k = 0, . . . , N � 1

x0 = x(0)

• P ⌫ 0, with P = P
>, is the terminal weight

• Q ⌫ 0, with Q = Q
>, is the state weight

• R � 0, with R = R
>, is the input weight

• N is the horizon length
• Note that x(0) is the current state, whereas x0, . . . , xN and u0, . . . , uN�1

are optimization variables that are constrained to obey the system
dynamics and the initial condition.

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 21 2 – Finite Horizon



Batch Approach
Final Result

• The problem is unconstrained.
• Setting the gradient to zero:

U
?
0(x(0)) = Kx(0)

• which implies

u
?(0)(x(0)) = K0x(0), . . . , u?(N � 1)(x(0)) = KN�1x(0)

which is a linear, open-loop controller function of the initial state x(0).
• The optimal cost is

J
?
0(x(0)) = x

>(0)P0x(0)

which is a positive definite quadratic function of the initial state x(0).

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 23 2 – Finite Horizon



Recursive Approach
Final Result

• The problem is unconstrained
• Using the Dynamic Programming Algorithm we have,

u
?(k) = Fkx(k)

which is a linear, time-varying state-feedback controller.
• the optimal cost-to-go k ! N is

J
?
k (x(k)) = x

>(k)Pkx(k)

which is a positive definite quadratic function of the state at time k .
• Fk is computed by using Pk+1

• Each Pk is related to Pk+1 by a recursive equation (Riccati Difference
Equation)

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 29 2 – Finite Horizon



Comparison of Batch and Recursive Approaches
(1/2)

• Fundamental difference: Batch optimization returns a sequence U
?(x(0))

of numeric values depending only on the initial state x(0), while dynamic
programming yields feedback policies u

?
k = Fkxk , k = 0, . . . , N � 1

depending on each xk .
• If the state evolves exactly as modelled, then the sequences of control

actions obtained from the two approaches are identical.
• The recursive solution should be more robust to disturbances and model

errors, because if the future states later deviate from their predicted
values, the exact optimal input can still be computed.

• The Recursive Approach is computationally more attractive because it
breaks the problem down into single-step problems. For large horizon
length, the Hessian H in the Batch Approach, which must be inverted,
becomes very large.

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 38 2 – Finite Horizon



Comparison of Batch and Recursive Approaches
(2/2)

• Without any modification, both solution methods will break down when
inequality constraints on xk or uk are added.

• The Batch Approach is far easier to adapt than the Recursive Approach
when constraints are present: just perform a constrained minimization for
the current state.

• Doing this at every time step within the time available, and then using
only the first input from the resulting sequence, amounts to receding
horizon control.

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 39 2 – Finite Horizon



Outline

1. Introduction

2. Finite Horizon

3. Receding Horizon

4. Infinite Horizon
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Receding horizon control

P(s)%

Objectives Model Constraints

Plant
Optimizer




Measurements 

Output  Input  Reference  

Objectives Model Constraints

PlanDo

PlanDo

PlanDo
Time

Receding horizon strategy introduces feedback.
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Receding Horizon Control

Compute optimal sequence over N-step horizon

System


Extract first input in 
sequence_

\�

u?(x)

x+ = Ax + Bu

u?(x0) = {u0, . . . , uN�1}

u�(x0) := argmin
NX

i=0

xTi Qxi + uTi Rui

Z�[� xi+1 = Axi + Bui

For unconstrained systems, this is a constant linear controller
However, can extend this concept to much more complex systems (MPC)

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 42 3 – Receding Horizon



Example - Impact of Horizon Length
Consider the lightly damped, stable system

G (s) :=
!2

s2 + 2⇣!s + !2

where ! = 1, ⇣ = 0.01. We sample at 10Hz and set P = Q = I , R = 1.

Discrete-time state-space model:

x
+ =


1.988 �0.998

1 0

�
x +


0.125

0

�
u

Closed-loop response
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Example: Short horizon N = 5

−3 −2 −1 0 1 2 3−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
i = 0

x1

x 2

Short horizon: Prediction and closed-loop response differ.

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 44 3 – Receding Horizon



Example: Short horizon N = 5

−3 −2 −1 0 1 2 3−2

−1.5
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2
i = 1

x1

x 2

Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N = 5

−3 −2 −1 0 1 2 3−2
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i = 2
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Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N = 5
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Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N = 5
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Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N = 5
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Short horizon: Prediction and closed-loop response differ.

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 49 3 – Receding Horizon



Example: Long horizon N = 20
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Long horizon: Prediction and closed-loop match.
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Example: Long horizon N = 20
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Long horizon: Prediction and closed-loop match.
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Example: Long horizon N = 20

−3 −2 −1 0 1 2 3−2
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Long horizon: Prediction and closed-loop match.
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Stability of Finite-Horizon Optimal Control Laws
Consider the system

G (s) =
!2

s2 + 2⇣!s + !2

where ! = 0.1 and ⇣ = �1, which has been discretized at 1r/s.
(Note that this system is unstable)

Is the system x
+ = (A + BKR,N)x

stable?

Where KR,N is the finite horizon LQR
controller with horizon N and weight R

(Q taken to be the identity)

Blue = stable, white = unstable

0 200 400 600 800 10000

5

10

15

20

25

30

35

40

Weight R

H
or

iz
on

 N
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1. Introduction

2. Finite Horizon

3. Receding Horizon

4. Infinite Horizon
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Infinite Horizon Control Problem: Optimal
Solution (1/2)

• In some cases we may want to solve the same problem with an infinite
horizon:

J1(x(0)) = min
u(·)

1X

k=0

�
x
>
k Qxk + u

>
k Ruk

�

subj. to xk+1 = Axk + Buk , k = 0, 1, 2, . . . ,1 ,

x0 = x(0)

• As with the Dynamic Programming approach, the optimal input is of the
form

u
?(k) = �(B>P1B + R)�1

B
>
P1Ax(k) := F1x(k)

and the infinite-horizon cost-to-go is

J1(x(k)) = x(k)>P1x(k) .

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 55 4 – Infinite Horizon



Infinite Horizon Control Problem: Optimal
Solution (2/2)

• The matrix P1 comes from an infinite recursion of the RDE, from a
notional point infinitely far into the future.

• Assuming the RDE does converge to some constant matrix P1, it must
satisfy the following (from (6), with Pk = Pk+1 = P1)

P1 = A
>
P1A + Q � A

>
P1B(B>P1B + R)�1

B
>
P1A ,

which is called the Algebraic Riccati equation (ARE).
• The constant feedback matrix F1 is referred to as the asymptotic form of

the Linear Quadratic Regulator (LQR).
• In fact, if (A,B) is stabilizable and (Q1/2,A) is detectable, then the RDE

(initialized with Q at k =1 and solved for k & 0) converges to the
unique positive definite solution P1 of the ARE.
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Stability of Infinite-Horizon LQR

• In addition, the closed-loop system with u(k) = F1x(k) is guaranteed to
be asymptotically stable, under the stabilizability and detectability
assumptions of the previous slide.

• The latter statement can be proven by substituting the control law
u(k) = F1x(k) into x(k + 1) = Ax(k) + Bu(k), and then examining the
properties of the system

x(k + 1) = (A + BF1)x(k) . (7)

• The asymptotic stability of (7) can be proven by showing that the infinite
horizon cost J

?
1(x(k)) = x(k)>P1x(k) is actually a Lyapunov function

for the system, i.e. J
?
1(x(k)) > 0, 8k 6= 0, J

?
1(0) = 0, and

J
?
1(x(k + 1)) < J

?
1(x(k)), for any x(k). This implies that

lim
k!1

x(k) = 0 .

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 57 4 – Infinite Horizon



Choices of Terminal Weight P in Finite Horizon
Control (1/2)

1. The terminal cost P of the finite horizon problem can in fact trivially be
chosen so that its solution matches the infinite horizon solution
• To do this, make P equal to the optimal cost from N to 1 (i.e. the cost

with the optimal controller choice). This can be computed from the ARE:

P = A
>
PA + Q � A

>
PB(B>PB + R)�1

B
>
PA

• This approach rests on the assumption that no constraints will be active

after the end of the horizon.
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Choices of Terminal Weight P in Finite Horizon
Control (2/2)

2. Choose P assuming no control action after the end of the horizon, so that

x(k + 1) = Ax(k), k = N, . . . ,1

• This P can be determined from solving the Lyapunov equation

APA
> + Q = P .

• This approach only makes sense if the system is asymptotically stable (or

no positive definite solution P will exist).

3. Assume we want the state and input both to be zero after the end of the
finite horizon. In this case no P but an extra constraint is needed

xN = 0

MPC Ch. 5 - Opt. Control Intro. and Unconstrained LQC 59 4 – Infinite Horizon
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Objectives of Constrained Optimal Control

x
+ = f (x , u) (x , u) 2 X ,U

Design control law u = (x) such that the system:

1. Satifies constraints : {xi} ⇢ X , {ui} ⇢ U
2. Is asymptotically stable: limi!1 xi = 0

3. Optimizes “performance”

4. Maximizes the set {x0 | Conditions 1-3 are met}

MPC Ch. 6 - Constrained Finite Time Optimal Control 4 1 – Constrained Optimal Control



Limitations of Linear Controllers

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

x1

x 2

System:

x
+ =


1 1
0 1

�
x +


1

0.5

�
u

Constraints:

X := {x | kxk1  5}
U := {u | kuk1  1}

Consider an LQR controller,
with Q = I , R = 1.

Does linear control work?
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Limitations of Linear Controllers

−5 0 5−5

0

5

x1

x 2

Input constraints violated

Input constraints violated
�2_� > �

�2_� > �

System:

x
+ =


1 1
0 1

�
x +


1

0.5

�
u

Constraints:

X := {x | kxk1  5}
U := {u | kuk1  1}

Consider an LQR controller,
with Q = I , R = 1.

Does linear control work?
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Limitations of Linear Controllers

−5 0 5−5

0

5

x1

x 2

Input constraints violated

Input constraints violated

Constraints violated later

Constraints violated later

Linear "
controller "

works

�2_� > �

�2_� > �

System:

x
+ =


1 1
0 1

�
x +


1

0.5

�
u

Constraints:

X := {x | kxk1  5}
U := {u | kuk1  1}

Consider an LQR controller,
with Q = I , R = 1.

Does linear control work?

Yes, but the region where it works is very small
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Limitations of Linear Controllers

−5 0 5−5

0

5

x1

x 2

Linear !
controller !

works

Best any nonlinear !
controller can do

System:

x
+ =


1 1
0 1

�
x +


1

0.5

�
u

Constraints:

X := {x | kxk1  5}
U := {u | kuk1  1}

Consider an LQR controller,
with Q = I , R = 1.

Does linear control work?

Yes, but the region where it works is very small

Use nonlinear control (MPC) to increase the region of attraction
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Constrained Infinite Time Optimal Control
(what we would like to solve)

J
⇤
0(x(0)) = min

1X

k=0

q(xk , uk)

s.t. xk+1 = Axk + Buk , k = 0, . . . ,N � 1

xk 2 X , uk 2 U , k = 0, . . . ,N � 1

x0 = x(0)

• Stage cost q(x , u): “cost” of being in state x and applying input u

• Optimizing over a trajectory provides a tradeoff between short- and
long-term benefits of actions
• We’ll see that such a control law has many beneficial properties...

... but we can’t compute it: there are an infinite number of variables

MPC Ch. 6 - Constrained Finite Time Optimal Control 10 2 – Basic Ideas of Predictive Control



Constrained Finite Time Optimal Control
(what we can sometimes solve)

J
⇤
t
(x(t)) = min

Ut

p(xt+N) +
N�1X

k=0

q(xt+k , ut+k)

subj. to xt+k+1 = Axt+k + But+k , k = 0, . . . ,N � 1
xt+k 2 X , ut+k 2 U , k = 0, . . . ,N � 1
xt+N 2 Xf

xt = x(t)

(1)

where Ut = {ut , . . . , ut+N�1}.

Truncate after a finite horizon:

• p(xt+N) : Approximates the ‘tail’ of the cost
• Xf : Approximates the ‘tail’ of the constraints

MPC Ch. 6 - Constrained Finite Time Optimal Control 11 2 – Basic Ideas of Predictive Control



On-line Receding Horizon Control

!"#"!"$%"

&'() #*)*!"

&!"+,%)"+-.*)&*)(

/'$,&*0')"+-,$&*)(

&!"+,%)"+-.*)&*)(

/'$,&*0')"+-,$&*)(

1. At each sampling time, solve a CFTOC.
2. Apply the optimal input only during [t, t + 1]
3. At t + 1 solve a CFTOC over a shifted horizon based on new state

measurements
4. The resulting controller is referred to as Receding Horizon Controller

(RHC) or Model Predictive Controller (MPC).
MPC Ch. 6 - Constrained Finite Time Optimal Control 12 2 – Basic Ideas of Predictive Control



On-line Receding Horizon Control

1) MEASURE the state x(t) at time instance t

2) OBTAIN U
⇤
t
(x(t)) by solving the optimization problem in (1)

3) IF U
⇤
t
(x(t)) = ; THEN ‘problem infeasible’ STOP

4) APPLY the first element u
⇤
t

of U
⇤
t

to the system

5) WAIT for the new sampling time t + 1, GOTO 1)

Note that we need a constrained optimization solver for step 2).

MPC Ch. 6 - Constrained Finite Time Optimal Control 13 2 – Basic Ideas of Predictive Control



MPC Features
Pros
• Any model:

• linear
• nonlinear
• single/multivariable
• time delays
• constraints

• Any objective:
• sum of squared errors
• sum of absolute errors (i.e.,

integral)
• worst error over time
• economic objective

Cons
• Computationally demanding in

the general case
• May or may not be stable
• May or may not be feasible

MPC Ch. 6 - Constrained Finite Time Optimal Control 14 2 – Basic Ideas of Predictive Control



Problem Formulation
Quadratic cost function

J0(x(0),U0) = x
0
N
PxN +

N�1X

k=0

x
0
k
Qxk + u

0
k
Ruk (3)

with P ⌫ 0, Q ⌫ 0, R � 0.
Constrained Finite Time Optimal Control problem (CFTOC).

J
⇤
0(x(0)) = min

U0
J0(x(0),U0)

subj. to xk+1 = Axk + Buk , k = 0, . . . ,N � 1
xk 2 X , uk 2 U , k = 0, . . . ,N � 1
xN 2 Xf

x0 = x(0)

(4)

N is the time horizon and X , U , Xf are polyhedral regions.

MPC Ch. 6 - Constrained Finite Time Optimal Control 24 4 – Constrained Optimal Control: 2-Norm



Construction of the QP with substitution

• Step 1: Rewrite the cost as

J0(x(0),U0) = U
0
0HU0 + 2x(0)0FU0 + x(0)0Yx(0)

= [U 00 x(0)0]
⇥

H F
0

F Y

⇤
[U0

0
x(0)0]0

Note:
⇥

H F
0

F Y

⇤
⌫ 0 since J0(x(0),U0) � 0 by assumption.

• Step 2: Rewrite the constraints compactly as (details provided on the
next slide)

G0U0  w0 + E0x(0)

• Step 3: Rewrite the optimal control problem as

J
⇤
0(x(0)) = min

U0
[U 00 x(0)0]

⇥
H F

0

F Y

⇤
[U0

0
x(0)0]0

subj. to G0U0  w0 + E0x(0)
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Solution

J
⇤
0(x(0)) = min

U0
[U 00 x(0)0]

⇥
H F

0

F Y

⇤
[U0

0
x(0)0]0

subj. to G0U0  w0 + E0x(0)

For a given x(0) U
⇤
0 can be found via a QP solver.

MPC Ch. 6 - Constrained Finite Time Optimal Control 27 4 – Constrained Optimal Control: 2-Norm



2-Norm State Feedback Solution
Start from QP with substitution.

• Step 1: Define z , U0 + H
�1

F
0
x(0) and transform the problem into

Ĵ
⇤(x(0)) = min

z
z
0
Hz

subj. to G0z  w0 + S0x(0),

where S0 , E0 + G0H
�1

F
0, and

Ĵ
⇤(x(0)) = J

⇤
0(x(0))� x(0)0(Y � FH

�1
F
0)x(0).

The CFTOC problem is now a multiparametric quadratic program
(mp-QP).

• Step 2: Solve the mp-QP to get explicit solution z
⇤(x(0))

• Step 3: Obtain U
⇤
0(x(0)) from z

⇤(x(0))

MPC Ch. 6 - Constrained Finite Time Optimal Control 35 4 – Constrained Optimal Control: 2-Norm



2-Norm State Feedback Solution
Main Results

1. The open loop optimal control function can be obtained by solving
the mp-QP problem and calculating U

⇤
0(x(0)), 8x(0) 2 X0 as

U0
⇤ = z

⇤(x(0))� H
�1

F
0
x(0).

2. The first component of the multiparametric solution has the form

u
⇤(0) = f0(x(0)), 8x(0) 2 X0,

f0 : Rn ! Rm, is continuous and PieceWise Affine on Polyhedra

f0(x) = F
i

0x + g
i

0 if x 2 CR
i

0, i = 1, . . . ,N r

0

3. The polyhedral sets CR
i

0 = {x 2 Rn|H i

0x  K
i

0}, i = 1, . . . ,N r

0 are a
partition of the feasible polyhedron X0.

4. The value function J
⇤
0(x(0)) is convex and piecewise quadratic on

polyhedra.
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Example
Consider the double integrator

8
><

>:

x(t + 1) =


1 1
0 1

�
x(t) +


0
1

�
u(t)

y(t) =
⇥
1 0

⇤
x(t)

subject to constraints

�1  u(k)  1, k = 0, . . . , 5

�10
�10

�
 x(k) 


10
10

�
, k = 0, . . . , 5

Compute the state feedback optimal controller u
⇤(0)(x(0)) solving the

CFTOC problem with N = 6, Q = [ 1 0
0 1 ], R = 0.1, P the solution of the ARE,

Xf = R2.
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Example

−10 −5 0 5 10
−10

−5

0

5

10

 x
1
(0)

 x
2
(0

)

Figure: Partition of the state space for the affine control law u⇤(0) (N r

0 = 13)
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Example

Figure: Partition of the state space for the affine control law u⇤(0) (N r

0 = 61)
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Example

Figure: Value function for the affine control law u⇤(0) (N r

0 = 61)
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Example
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Figure: Optimal control input for the affine control law u⇤(0) (N r

0 = 61)

MPC Ch. 6 - Constrained Finite Time Optimal Control 41 4 – Constrained Optimal Control: 2-Norm



University of Pennsylvania, ESE619

Model Predictive Control

Chapter 7: Guaranteeing Feasibility and Stability

Prof. Manfred Morari

Spring 2019

Coauthors: Prof. Colin Jones, EPFL

Prof. Melanie Zeilinger, ETH Zurich

Prof. Francesco Borrelli, UC Berkeley

F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid Systems,

Cambridge University Press, 2017. [Ch. 12].



Infinite Time Constrained Optimal Control
(what we would like to solve)

J
?
0
(x(0)) = min

1X

k=0

q(xk , uk)

subj. to xk+1 = Axk + Buk , k = 0, 1, 2, . . .

xk 2 X , uk 2 U , k = 0, 1, 2, . . .

x0 = x(0)

• Stage cost q(x , u) describes “cost” of being in state x and applying input
u.
• Optimizing over a trajectory provides a tradeoff between short- and

long-term benefits of actions
• We’ll see that such a control law has many beneficial properties...

...but we can’t compute it: there are an infinite number of variables

MPC Ch. 7 - Guaranteeing Feasibility and Stability 4 1 – Receding Horizon Control and Model Predictive Control



Receding Horizon Control
(what we can sometimes solve)

J
?
t (x(t)) = min

Ut
p(xt+N) +

N�1X

k=0

q(xt+k , ut+k)

subj. to xt+k+1 = Axt+k + But+k , k = 0, . . . ,N � 1

xt+k 2 X , ut+k 2 U , k = 0, . . . ,N � 1

xt+N 2 Xf

xt = x(t)

where Ut = {ut , . . . , ut+N�1}.

Truncate after a finite horizon:

• p(xt+N) : Approximates the ‘tail’ of the cost
• Xf : Approximates the ‘tail’ of the constraints

MPC Ch. 7 - Guaranteeing Feasibility and Stability 5 1 – Receding Horizon Control and Model Predictive Control



Example: Loss of feasibility - Double Integrator
Consider the double integrator

8
<

:
x(t + 1) =


1 1
0 1

�
x(t) +


0
1

�
u(t)

y(t) =
⇥
1 0

⇤
x(t)

subject to the input constraints

�0.5  u(t)  0.5

and the state constraints

�5
�5

�
 x(t) 


5
5

�
.

Compute a receding horizon controller with quadratic objective with

N = 3, P = Q =


1 0
0 1

�
, R = 10.

MPC Ch. 7 - Guaranteeing Feasibility and Stability 20 3 – Challenges: Feasibility and Stability



Summary: Feasibility and Stability
Problems originate from the use of a ‘short sighted’ strategy

) Finite horizon causes deviation between the open-loop prediction and the
closed-loop system:

Set of feasible 
initial states for 
open-loop 
prediction

Set of initial 
states leading to 
feasible closed-
loop trajectories

−5 0 5
−5

0

5

x1

x 2

−5 0 5
−5

0

5

x1

x 2

Open-loop 
predictions

Closed-loop 
trajectories

Ideally we would solve the MPC problem with an infinite horizon, but that is
computationally intractable

) Design finite horizon problem such that it approximates the infinite horizon

MPC Ch. 7 - Guaranteeing Feasibility and Stability 26 3 – Challenges: Feasibility and Stability



Summary: Feasibility and Stability

• Infinite-Horizon
If we solve the RHC problem for N =1 (as done for LQR), then the
open loop trajectories are the same as the closed loop trajectories. Hence
• If problem is feasible, the closed loop trajectories will be always feasible

• If the cost is finite, then states and inputs will converge asymptotically to

the origin

• Finite-Horizon
RHC is “short-sighted” strategy approximating infinite horizon controller.
But
• Feasibility. After some steps the finite horizon optimal control problem

may become infeasible. (Infeasibility occurs without disturbances and

model mismatch!)

• Stability. The generated control inputs may not lead to trajectories that

converge to the origin.

MPC Ch. 7 - Guaranteeing Feasibility and Stability 27 3 – Challenges: Feasibility and Stability



Feasibility and stability in MPC - Solution
Main idea: Introduce terminal cost and constraints to explicitly ensure
feasibility and stability:

J
⇤
0
(x0) = min

U0

p(xN) +
N�1X

k=0

q(xk , uk) Terminal Cost

subj. to
xk+1 = Axk + Buk , k = 0, . . . ,N � 1
xk 2 X , uk 2 U , k = 0, . . . ,N � 1
xN 2 Xf Terminal Constraint
x0 = x(t)

p(·) and Xf are chosen to mimic an infinite horizon.

MPC Ch. 7 - Guaranteeing Feasibility and Stability 28 3 – Challenges: Feasibility and Stability



Stability of MPC - Main Result
Assumptions

1. Stage cost is positive definite, i.e. it is strictly positive and only zero at
the origin

2. Terminal set is invariant under the local control law v(xk):

xk+1 = Axk + Bv(xk) 2 Xf , for all xk 2 Xf

All state and input constraints are satisfied in Xf :

Xf ✓ X , v(xk) 2 U , for all xk 2 Xf

3. Terminal cost is a continuous Lyapunov function in the terminal set Xf
and satisfies:

p(xk+1)� p(xk)  �q(xk , v(xk)), for all xk 2 Xf

MPC Ch. 7 - Guaranteeing Feasibility and Stability 43 4 – Guaranteeing Feasibility and Stability



Under those 3 assumptions:
Theorem

The closed-loop system under the MPC control law u
⇤
0
(x) is asymptotically

stable and the set Xf is positive invariant for the system

x(k + 1) = Ax + Bu
⇤
0
(x).

MPC Ch. 7 - Guaranteeing Feasibility and Stability 44 4 – Guaranteeing Feasibility and Stability



MPC Stability and Feasibility - Summary
IF we choose: Xf to be an invariant set (Assumption 2) and the terminal cost
p(x) to be a Lyapunov function with the decrease described in Assumption 3,
THEN

• The set of feasible initial states X0 is also the set of initial states which
are persistently feasible (feasible for all t � 0) for the system in
closed-loop with the designed MPC.
• The equilibrium point (0, 0) is asymptotically stable according to

Lyapunov.
• J

?
0
(x) is a Lyapunov function for the closed loop system (system + MPC)

defined over X0. Then X0 is the region of attraction of the equilibrium
point.
• Proof works for any nonlinear system and positive definite and continuous

stage cost as long as the optimizer is unique.

MPC Ch. 7 - Guaranteeing Feasibility and Stability 48 4 – Guaranteeing Feasibility and Stability



Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

• Design unconstrained LQR control law

F1 = �(B 0P1B + R)�1
B
0
P1A

where P1 is the solution to the discrete-time algebraic Riccati equation:

P1 = A
0
P1A + Q � A

0
P1B(B 0P1B + R)�1

B
0
P1A

• Choose the terminal weight P = P1

• Choose the terminal set Xf to be the maximum invariant set for the
closed-loop system xk+1 = (A + BF1)xk :

xk+1 = Axk + BF1(xk) 2 Xf , for all xk 2 Xf

All state and input constraints are satisfied in Xf :

Xf ✓ X , F1xk 2 U , for all xk 2 Xf
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Choice of Terminal Sets and Cost - Linear System,
Quadratic Cost

1. The stage cost is a positive definite function

2. By construction the terminal set is invariant under the local control law
v = F1x

3. Terminal cost is a continuous Lyapunov function in the terminal set Xf
and satisfies:

x
0
k+1

Pxk+1 � x
0
kPxk

= x
0
k(�P1 + A

0
P1A� A

0
P1B(B 0P1B + R)�1

B
0
P1A� F

0
1RF1)xk

= �x
0
kQxk � v

0
kRvk

All the Assumptions of the Feasibility and Stability Theorem are verified.
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Example: Unstable Linear System
System dynamics:

xk+1 =


1.2 1
0 1

�
xk +


1

0.5

�
uk

Constraints:

X := {x |�50  x1  50, �10  x2  10} = {x |Axx  bx}

U := {u | kuk1  1} = {u |Auu  bu}

Stage cost:

q(x , u) := x
0

1 0
0 1

�
x + u

>
u

Horizon: N = 10
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Example: Designing MPC Problem

1. Compute the optimal LQR controller and cost matrices: F1, P1
2. Compute the maximal invariant set Xf for the closed-loop linear system

xk+1 = (A + BF1)xk subject to the constraints

Xcl :=

⇢
x

����


Ax

AuF1

�
x 


bx
bu

��

−50 0 50−10

−5

0

5

10
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Example: Closed-loop behaviour
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Example: Closed-loop behaviour
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Example: Closed-loop behaviour
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Example: Closed-loop behaviour
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Example: Closed-loop behaviour
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Example: Lyapunov Decrease of Optimal Cost

0 5 10 150

1000

2000

3000

4000

5000

6000

7000
J*
(x
i)
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Stability of MPC - Remarks

• The terminal set Xf and the terminal cost ensure recursive feasibility and
stability of the closed-loop system.
But: the terminal constraint reduces the region of attraction.
(Can extend the horizon to a sufficiently large value to increase the region)

Are terminal sets used in practice?

• Generally not...
• Not well understood by practitioners

• Requires advanced tools to compute (polyhedral computation or LMI)

• Reduces region of attraction
• A ‘real’ controller must provide some input in every circumstance

• Often unnecessary
• Stable system, long horizon ! will be stable and feasible in a (large)

neighbourhood of the origin
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Choice of Terminal Set and Cost: Summary

• Terminal constraint provides a sufficient condition for stability

• Region of attraction without terminal constraint may be larger than for
MPC with terminal constraint but characterization of region of attraction
extremely difficult

• Xf = 0 simplest choice but small region of attaction for small N

• Solution for linear systems with quadratic cost

• In practice: Enlarge horizon and check stability by sampling

• With larger horizon length N, region of attraction approaches maximum
control invariant set

MPC Ch. 7 - Guaranteeing Feasibility and Stability 61 4 – Guaranteeing Feasibility and Stability



University of Pennsylvania, ESE619

Model Predictive Control

Chapter 10: Practical Issues

Prof. Manfred Morari

Spring 2019

Coauthors: Prof. Francesco Borrelli, UC Berkeley

Prof. Colin Jones, EPFL

Prof. Melanie Zeilinger, ETH Zurich

F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid Systems,

Cambridge University Press, 2017. [Ch. 12.6-12.7].



Outline

1. Reference Tracking

2. Soft Constraints

3. Generalizing the Problem
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Outline

1. Reference Tracking

2. Soft Constraints

3. Generalizing the Problem
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Tracking problem
Consider the linear system model

xk+1 = Axk + Buk

yk = Cxk

Goal: Track given reference r such that yk ! r as k !1.

Determine the steady state target condition xs , us :

xs = Axs + Bus

Cxs = r
()


I � A �B

C 0

� 
xs
us

�
=


0
r

�

MPC Ch. 10 - Practical Issues 4 1 – Reference Tracking



Steady-state Target Problem

• In the presence of constraints: (xs , us) has to satisfy state and input
constraints.

• In case of multiple feasible us , compute ‘cheapest’ steady-state (xs , us)
corresponding to reference r :

min uT
s Rsus

subj. to

I � A �B

C 0

� 
xs
us

�
=


0
r

�

xs 2 X , us 2 U .

• In general, we assume that the target problem is feasible
• If no solution exists: compute reachable set point that is ‘closest’ to r :

min (Cxs � r)TQs(Cxs � r)

subj. to xs = Axs + Bus

xs 2 X , us 2 U .

MPC Ch. 10 - Practical Issues 6 1 – Reference Tracking



RHC Reference Tracking
We now use control (MPC) to bring the system to a desired steady-state
condition (xs , us) yielding the desired output yk ! r .

The MPC is designed as follows

min
u0,...,uN�1

kyN � Cxsk2P +
N�1X

k=0

kyk � Cxsk2Q + kuk � usk2R

subj. to [model constraints]

x0 = x(k)

Drawback: controller will show offset in case of unknown model error or
disturbances.

MPC Ch. 10 - Practical Issues 7 1 – Reference Tracking



RHC Reference Tracking without Offset (1/6)
Discrete-time, time-invariant system (possibly nonlinear, uncertain)

xm(k + 1) = g(xm(k), u(k))

ym(k) = h(xm(k))

Objective:

• Design an RHC in order to make y(k) track the reference signal r(k), i.e.,
(y(k)� r(k))! 0 for t !1.
• In the rest of the section we study step references and focus on zero

steady-state tracking error, y(k)! r1 as k !1.

Consider augmented model

x(k + 1) = Ax(k) + Bu(k) + Bdd(k)

d(k + 1) = d(k)

y(k) = Cx(k) + Cdd(k)

with constant disturbance d(k) 2 Rnd .
MPC Ch. 10 - Practical Issues 9 1 – Reference Tracking



RHC Reference Tracking without Offset (2/6)
State observer for augmented model


x̂(k + 1)
d̂(k + 1)

�
=


A Bd
0 I

� 
x̂(k)
d̂(k)

�
+


B
0

�
u(k)

+


Lx
Ld

�
(�ym(k) + Cx̂(k) + Cd d̂(k))

Lemma

Suppose the observer is stable and the number of outputs p equals the dimen-
sion of the constant disturbance nd . The observer steady state satisfies:


A� I B

C 0

� 
x̂1
u1

�
=


�Bd d̂1

ym,1 � Cd d̂1

�

where ym,1 and u1 are the steady state measured outputs and inputs.

) Observer output Cx̂1+Cd d̂1 tracks the measurement ym,1 without offset.

MPC Ch. 10 - Practical Issues 10 1 – Reference Tracking



RHC Reference Tracking without Offset (3/6)
For offset-free tracking at steady state we want ym,1 = r1.

The observer condition

A� I B

C 0

� 
x̂1
u1

�
=


�Bd d̂1

ym,1 � Cd d̂1

�

suggests that at steady state the MPC should satisfy

A� I B

C 0

� 
x̂target,1
utarget,1

�
=


�Bd d̂1

r1 � Cd d̂1

�

MPC Ch. 10 - Practical Issues 11 1 – Reference Tracking



RHC Reference Tracking without Offset (4/6)
Formulate the RHC problem

min
U
kxN � x̄kk2P +

N�1X

k=0

kxk � x̄kk2Q + kuk � ūtk2R

subj. to xk+1 = Axk + Buk + Bddk , k = 0, . . . ,N

xk 2 X , uk 2 U , k = 0, . . . ,N � 1

xN 2 Xf

dk+1 = dk , k = 0, . . . ,N

x0 = x̂(k)

d0 = d̂(k),

with the targets ūk and x̄k given by

A� I B

C 0

� 
x̄k
ūk

�
=


�Bd d̂(k)

r(k)� Cd d̂(k)

�

MPC Ch. 10 - Practical Issues 12 1 – Reference Tracking



RHC Reference Tracking without Offset (5/6)
Denote by (x̂(k), d̂(k), r(k)) = u?

0
the control law when the estimated state

and disturbance are x̂(k) and d̂(k), respectively.

Theorem

Consider the case where the number of constant disturbances equals the num-
ber of (tracked) outputs nd = p = r . Assume the RHC is recursively feasible
and unconstrained for k � j with j 2 N+ and the closed-loop system

x(k + 1) = f (x(k),(x̂(k), d̂(k), r(k)))

x̂(k + 1) = (A + LxC )x̂(k) + (Bd + LxCd)d̂(k)

+ B(x̂(k), d̂(k), r(k))� Lxym(k)

d̂(k + 1) = LdCx̂(k) + (I + LdCd)d̂(k)� Ldym(k)

converges to x̂(k)! x̂1, d̂(k)! d̂1, ym(k)! ym,1 as t !1.

Then ym(k)! r1 as t !1.

MPC Ch. 10 - Practical Issues 13 1 – Reference Tracking



RHC Reference Tracking without Offset (6/6)
Question: How do we choose the matrices Bd and Cd in the augmented
model?

Lemma

The augmented system, with the number of outputs p equal to the dimension
of the constant disturbance nd , and Cd = I is observable if and only if (C ,A)
is observable and

det

A� I Bd

C I

�
= det(A� I � BdC ) 6= 0.

Remark: If the plant has no integrators, then det (A� I ) 6= 0 and we can
choose Bd = 0. If the plant has integrators then Bd has to be chosen
specifically to make det (A� I � BdC ) 6= 0.

MPC Ch. 10 - Practical Issues 14 1 – Reference Tracking



Outline

1. Reference Tracking

2. Soft Constraints

3. Generalizing the Problem

MPC Ch. 10 - Practical Issues 15 2 – Soft Constraints



Soft Constraints: Motivation

• Input constraints are dictated by physical constraints on the actuators and
are usually “hard”

• State/output constraints arise from practical restrictions on the allowed
operating range and are rarely hard

• Hard state/output constraints always lead to complications in the
controller implementation
• Feasible operating regime is constrained even for stable systems

• Controller patches must be implemented to generate reasonable control

action when measured/estimated states move outside feasible range

because of disturbances or noise

• In industrial implementations, typically, state constraints are softened

MPC Ch. 10 - Practical Issues 17 2 – Soft Constraints



Mathematical Formulation

• Original problem:
min

z
f (z)

subj. to g(z)  0

Assume for now g(z) is scalar valued.
• “Softened” problem:

min
z ,✏

f (z) + l(✏)

subj. to g(z)  ✏
✏ � 0

Requirement on l(✏)

If the original problem has a feasible solution z?, then the softened problem
should have the same solution z?, and ✏ = 0.

Note: l(✏) = v · ✏2 does not meet this requirement for any v > 0 as
demonstrated next.

MPC Ch. 10 - Practical Issues 19 2 – Soft Constraints



Quadratic Penalty

• Constraint function g(z) , z � z?  0 induces feasible region (grey)
=) minimizer of the original problem is z?

• Quadratic penalty l(✏) = v · ✏2 for ✏ � 0
=) minimizer of f (z) + l(✏) is (z? + ✏?, ✏?) instead of (z?, 0)

MPC Ch. 10 - Practical Issues 20 2 – Soft Constraints



Quadratic Penalty

• Constraint function g(z) , z � z?  0 induces feasible region (grey)
=) minimizer of the original problem is z?

• Quadratic penalty l(✏) = v · ✏2 for ✏ � 0
=) minimizer of f (z) + l(✏) is (z? + ✏?, ✏?) instead of (z?, 0)

MPC Ch. 10 - Practical Issues 21 2 – Soft Constraints



Linear Penalty

• Constraint function g(z) := z � z?  0 induces feasible region (grey)
=) minimizer of the original problem is z?

• Linear penalty l(✏) = u · ✏ for ✏ � 0 with u chosen large enough so that
u + limz!z? f 0(z) > 0
=) minimizer of f (z) + l(✏) is (z?, 0)

MPC Ch. 10 - Practical Issues 22 2 – Soft Constraints



Main Result
Theorem: Exact Penalty Function

l(✏) = u · ✏ satisfies the requirement for any u > u? � 0, where u? is the
optimal Lagrange multiplier for the original problem.

• Disadvantage: l(✏) = u · ✏ renders the cost non-smooth.
• Therefore in practice, to get a smooth penalty, we use

l(✏) = u · ✏+ v · ✏2

with u > u? and v > 0.
• Extension to multiple constraints gj (z)  0, j = 1, . . . , r :

l(✏) =
rX

j=1

uj · ✏j + vj · ✏2j (1)

where uj > u?j and vj > 0 can be used to weight violations (if necessary)
differently.

MPC Ch. 10 - Practical Issues 23 2 – Soft Constraints
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Introduction

argmin
Ut

N�1X

k=0

q(xt+k , ut+k)

subj. to xt = x(t)

xt+k+1 = Axt+k + But+k

xt+k 2 X , ut+k 2 U

Plant
u
?
t

Plant State x(t)

Output y(t)

• Requires at each time step on-line solution of an optimization problem

MPC Ch. 11 - Explicit MPC 4 1 – Introduction



Introduction

OFFLINE ONLINE

U
⇤
0(x(t)) = argmin x

T

N
PxN +

N�1X

k=0

x
0
k
Qxk + u

0
k
Ruk

subj. to x0 = x(t)

xk+1 = Axk + Buk , k = 0, . . . ,N � 1

xk 2 X , uk 2 U , k = 0, . . . ,N � 1

xN 2 Xf

Plant state 

Output 
Plant 

* ( ( ))U x t0 ( )x t

( )y t

* ( )U x0

• Optimization problem is parameterized by state

• Pre-compute control law as function of state x

• Control law is piecewise affine for linear system/constraints

Result: Online computation dramatically reduced and real-time

Tool: Parametric programming

MPC Ch. 11 - Explicit MPC 5 1 – Introduction



mpQP - Problem formulation

J
⇤(x) = min

z

1
2z
0
Hz ,

subj. to Gz  w + Sx

where H > 0, z 2 Rs
, x 2 Rn

and G 2 Rm⇥s
.

Given a closed and bounded polyhedral set K ⇢ Rn
of parameters denote by

K⇤ ✓ K the region of parameters x 2 K such that the problem is feasible

K⇤ := {x 2 K : 9z , Gz  w + Sx}

Goals:

1. find z
⇤(x) = argminz J(z , x),

2. find all x for which the problem has a solution

3. compute the value function J
⇤(x)

MPC Ch. 11 - Explicit MPC 9 2 – mpQP



Active Set and Critical Region

Let I := {1, . . . ,m} be the set of constraint indices.

Definition: Active Set

We define the active set at x , A(x), and its complement, NA(x), as

A(x) := {i 2 I : Giz
⇤(x)� Six = wi}

NA(x) := {i 2 I : Giz
⇤(x)� Six < wi}.

Gi , Si and wi are the i-th row of G , S and w , respectively.

Definition: Critical Region

CRA is the set of parameters x for which the same set A ✓ I of constraints

is active at the optimum. For a given x̄ 2 K⇤ let (A,NA) := (A(x̄),NA(x̄)).
Then,

CRA := {x 2 K⇤ : A(x) = A}.

MPC Ch. 11 - Explicit MPC 10 2 – mpQP



mpQP - Global properties of the solution

The following theorem summarizes the properties of the mpQP solution.

Theorem: Solution of mpQP

i) The feasible set K⇤ is a polyhedron.

ii) The optimizer function z
⇤(x) : K⇤ ! Rm

is:

• continuous

• polyhedral piecewise affine over K⇤. It is affine in each critical region

CRi , every CRi is a polyhedron and
S
CRi = K⇤.

iii) The value function J
⇤(x) : K⇤ ! R is:

• continuous

• convex

• polyhedral piecewise quadratic over K⇤, it is quadratic in each CRi

MPC Ch. 11 - Explicit MPC 11 2 – mpQP



mpQP - Example (1/4)

Consider the example

min
z(x)

1
2 (z

2
1 + z

2
2 )

subj. to z1  1 + x1 + x2

�z1  1� x1 � x2

z2  1 + x1 � x2

�z2  1� x1 + x2

z1 � z2  x1 + 3x2

�z1 + z2  �2x1 � x2

�1  x1  1, � 1  x2  1

MPC Ch. 11 - Explicit MPC 12 2 – mpQP



mpQP - Example (2/4)

The explicit solution is defined over i = 1, . . . , 7 regions

Pi = {x 2 R2 | Aix  bi} in the parameter space x1 � x2.

Critical regions Piecewise quadratic objective function J
⇤(x)

MPC Ch. 11 - Explicit MPC 13 2 – mpQP



mpQP - Example (3/4)

Primal solution is given as piecewise affine function z(x) = Fi + gix if x 2 Pi .

z
⇤(x) =

8
>>>>>>>>>><

>>>>>>>>>>:

 
0.5 1.5

�0.5 �1.5

!

x if x 2 P1

 
2 2

1 �1

!

x +

 
1

1

!

if x 2 P2

.

.

.

.

.

.
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mpQP - Example (4/4)

Primal solution is given as piecewise affine function z(x) = Fi + gix if x 2 Pi .

Piecewise affine function z
⇤
1 (x) Piecewise affine function z

⇤
2 (x)

MPC Ch. 11 - Explicit MPC 15 2 – mpQP



2-Norm State Feedback Solution

Main Results

1. The Open loop optimal control function can be obtained by solving

the mp-QP problem and calculating U
⇤
0(x(0)), 8x(0) 2 X0 as

U0
⇤ = z

⇤(x(0))� H
�1

F
0
x(0).

2. The first component of the multiparametric solution has the form

u
⇤(0) = f0(x(0)), 8x(0) 2 X0,

f0 : Rn ! Rm
, is continuous and piecewise affine on polyhedra

f0(x) = F
i

0x + g
i

0 if x 2 CR
i

0, i = 1, . . . ,N r

0

3. The polyhedral sets CR
i

0 = {x 2 Rn|H i

0x  K
i

0}, i = 1, . . . ,N r

0 are a

partition of the feasible polyhedron X0.

4. The value function J
⇤
0(x(0)) is convex and piecewise quadratic on

polyhedra.

MPC Ch. 11 - Explicit MPC 29 4 – Constrained Finite Time Optimal Control



Example

Consider the double integrator

8
><

>:

x(t + 1) =


1 1

0 1

�
x(t) +


0

1

�
u(t)

y(t) =
⇥

1 0
⇤
x(t)

subject to constraints

�1  u(k)  1, k = 0, . . . , 5


�10

�10

�
 x(k) 


10

10

�
, k = 0, . . . , 5

Compute the state feedback optimal controller u
⇤(0)(x(0)) solving the

CFTOC problem with N = 6, Q = [ 1 0
0 1 ], R = 0.1, P the solution of the ARE,

Xf = R2
.

MPC Ch. 11 - Explicit MPC 30 4 – Constrained Finite Time Optimal Control



Example

−10 −5 0 5 10
−10

−5

0

5

10

 x
1
(0)

 x
2
(0

)

Partition of state space for the piecewise affine control law u
⇤(0) (N

r

0 = 13)
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Online evaluation: Point location

Calculation of piecewise affine function:

1. Point location

2. Evaluation of affine function

1 2 

MPC Ch. 11 - Explicit MPC 38 5 – Online Evaluation: Point Location Problem
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Introduction
Up to this point: Discrete-time linear systems with linear constraints.

We now consider MPC for systems with

1. Continuous dynamics: described by one or more difference (or
differential) equations; states are continuous-valued.

2. Discrete events: state variables assume discrete values, e.g.
• binary digits {0, 1},
• N, Z, Q, . . .
• finite set of symbols

Hybrid systems: Dynamical systems whose state evolution depends on an
interaction between continuous dynamics and discrete events.

MPC Ch. 12 - Hybrid MPC 5 1 – Modeling of Hybrid Systems



Mechanical System with BacklashHybrid Systems: Examples (I)
Mechanical system with backlash

x1

x2

εδ

∆x

Continuous dynamics : states x1, x2, ẋ1, ẋ2.

Discrete events :

a) “contact mode” ⇒ mechanical parts are in contact and the force is
transmitted. Condition:

[(∆x = δ) ∧ (ẋ1 > ẋ2)]
∨

[(∆x = ε) ∧ (ẋ2 > ẋ1)]
b) “backlash mode” ⇒ mechanical parts are not in contact

Francesco Borrelli (UC Berkeley) Hybrid Systems April 25, 2011 4 / 59

• Continuous dynamics: states x1, x2, ẋ1, ẋ2.
• Discrete events:

a) “contact mode" ) mechanical parts are in contact and the force is

transmitted. Condition:

[(�x = �) ^ (ẋ1 > ẋ2)]
_

[(�x = ") ^ (ẋ2 > ẋ1)]

b) “backlash mode" ) mechanical parts are not in contact

MPC Ch. 12 - Hybrid MPC 8 1 – Modeling of Hybrid Systems



DCDC Converter
Hybrid Systems: Examples (II)
DC2DC Converter

rℓ

vℓ
vs

iℓ

vc

ic

rc
i0

r0
v0

S = 0

S = 1

Continuous dynamics : states vℓ, iℓ, vc, ic, v0, i0

Discrete events : S = 0, S = 1

MODE 1 (S = 1 ) MODE 2 (S = 0 )

Francesco Borrelli (UC Berkeley) Hybrid Systems April 25, 2011 5 / 59

• Continuous dynamics: states v`, i`, vc , ic , v0, i0

• Discrete events: S = 0, S = 1

Mode 1 (S = 1)

Hybrid Systems: Examples (II)
DC2DC Converter

rℓ

vℓ
vs

iℓ

vc

ic

rc
i0

r0
v0

S = 0

S = 1

Continuous dynamics : states vℓ, iℓ, vc, ic, v0, i0

Discrete events : S = 0, S = 1

MODE 1 (S = 1 ) MODE 2 (S = 0 )

Francesco Borrelli (UC Berkeley) Hybrid Systems April 25, 2011 5 / 59

Mode 2 (S = 0)

Hybrid Systems: Examples (II)
DC2DC Converter

rℓ

vℓ
vs

iℓ

vc

ic

rc
i0

r0
v0

S = 0

S = 1

Continuous dynamics : states vℓ, iℓ, vc, ic, v0, i0

Discrete events : S = 0, S = 1

MODE 1 (S = 1 ) MODE 2 (S = 0 )

Francesco Borrelli (UC Berkeley) Hybrid Systems April 25, 2011 5 / 59
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Piecewise Affine (PWA) Systems
PWA systems are defined by:

• affine dynamics and output in each region:
⇢

x(t + 1) = Aix(t) + Biu(t) + fi
y(t) = Cix(t) + Diu(t) + gi

�
if (x(t), u(t)) 2 Xi(t)

• polyhedral partition of the (x , u)-space:

{Xi}si=1 := {x , u | Hix + Jiu  Ki}

with x 2 Rn, u 2 Rm

Physical constraints on x(t) and u(t) are defined by polyhedra Xi

MPC Ch. 12 - Hybrid MPC 11 1 – Modeling of Hybrid Systems



Piecewise Affine (PWA) Systems
Examples:

• linearization of a non-linear system at different operating point ) useful
as an approximation tool

• closed-loop MPC system for linear constrained systems

• When the mode i is an exogenous variable, the partition disappears and
we refer to the system as a Switched Affine System (SAS)

Definition: Well-Posedness

Let P be a PWA system and let X = [s
i=1Xi ✓ Rn+m be the polyhedral

partition associated with it. System P is called well-posed if for all pairs
(x(t), u(t)) 2 X there exists only one index i(t) satisfying the membership
condition.

MPC Ch. 12 - Hybrid MPC 12 1 – Modeling of Hybrid Systems



Binary States, Inputs, and Outputs
Remark: In the previous example, the PWA system has only continuous states
and inputs.

We will formulate PWA systems including binary state and inputs by treating
0–1 binary variables as:

• Numbers, over which arithmetic operations are defined,
• Boolean variables, over which Boolean functions are defined.

We will use the notation x = [ xc
x` ] 2 Rnc ⇥ {0, 1}n` , n := nc + n`;

y 2 Rpc ⇥ {0, 1}p` , p := pc + p`; u 2 Rmc ⇥ {0, 1}m` , m := mc + m`.

MPC Ch. 12 - Hybrid MPC 13 1 – Modeling of Hybrid Systems



Boolean Algebra: Basic Definitions and Notation

• Boolean variable: A variable � is a Boolean variable if � 2 {0, 1}, where
“� = 0” means “false", “� = 1” means “true".

• A Boolean expression is obtained by combining Boolean variables
through the logic operators ¬ (not), _ (or), ^ (and),  (implied by), !
(implies), and $ (iff).

• A Boolean function f : {0, 1}n�1 7! {0, 1} is used to define a Boolean
variable �n as a logic function of other variables �1, . . . , �n�1:

�n = f (�1, �2, . . . , �n�1).

MPC Ch. 12 - Hybrid MPC 14 1 – Modeling of Hybrid Systems



Mixed Logical Dynamical Systems
Goal: Describe hybrid system in form compatible with optimization software:

• continuous and Boolean variables
• linear equalities and inequalities

Idea: associate to each Boolean variable pi a binary integer variable �i :

pi , {�i = 1}, ¬pi , {�i = 0}

and embed them into a set of constraints as linear integer inequalities.

Two main steps:
1. Translation of Logic Rules into Linear Integer Inequalities
2. Translation continuous and logical components into Linear Mixed-Integer

Relations

Final result: a compact model with linear equalities and inequalities involving
real and binary variables

MPC Ch. 12 - Hybrid MPC 17 1 – Modeling of Hybrid Systems



MLD Hybrid Model
A DHA can be converted into the following MLD model

xt+1 = Axt + B1ut + B2�t + B3zt

yt = Cxt + D1ut + D2�t + D3zt

E2�t + E3zt  E4xt + E1ut + E5

where x 2 Rnc ⇥ {0, 1}n` , u 2 Rmc ⇥ {0, 1}m` y 2 Rpc ⇥ {0, 1}p` , � 2 {0, 1}r`
and z 2 Rrc .

Physical constraints on continuous variables:

C =
⇢

xc
uc

�
2 Rnc+mc

���� Fxc + Guc  H

�

MPC Ch. 12 - Hybrid MPC 26 1 – Modeling of Hybrid Systems



HYbrid System DEscription Language
HYSDEL

• based on DHA
• enables description of discrete-time hybrid systems in a compact way:

• automata and propositional logic

• continuous dynamics

• A/D and D/A conversion

• definition of constraints

• automatically generates MLD models for MATLAB
• freely available from:

http://control.ee.ethz.ch/~hybrid/hysdel/

MPC Ch. 12 - Hybrid MPC 28 1 – Modeling of Hybrid Systems
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Optimal Control for Hybrid Systems: General
Formulation
Consider the CFTOC problem:

J
⇤(x(t)) = min

U0
p(xN) +

N�1X

k=0

q(xk , uk , �k , zk),

s.t.

8
>>>>>><

>>>>>>:

xk+1 = Axk + B1uk + B2�k + B3zk

E2�k + E3zk  E4xk + E1uk + E5

xN 2 Xf
x0 = x(t)

where x 2 Rnc ⇥ {0, 1}nb , u 2 Rmc ⇥ {0, 1}mb , y 2 Rpc ⇥ {0, 1}pb , � 2 {0, 1}rb
and z 2 Rrc and

U0 = {u0, u1, . . . , uN�1}

Mixed Integer Optimization

MPC Ch. 12 - Hybrid MPC 30 2 – Optimal Control of Hybrid Systems



Model Predictive Control of Hybrid Systems
MPC solution: Optimization in the loop

argmin
Ut

N�1X

k=0

q(xt+k , ut+k)

subj. to xt = x(t)

xt+k+1 = Axt+k + But+k

xt+k 2 X , ut+k 2 U

Plant
u
?
t

Plant State x(t)

Output y(t)

As for linear MPC, at each sample time:

• Measure / estimate current state x(t)
• Find the optimal input sequence for the entire planning window N:

U
⇤
t = {u⇤t , u⇤t+1, . . . , u

⇤
t+N�1}

• Implement only the first control action u
⇤
t

• Key difference: Requires online solution of an MILP or MIQP
MPC Ch. 12 - Hybrid MPC 35 3 – Model Predictive Control of Hybrid Systems



Summary

• Hybrid systems: mixture of continuous and discrete dynamics
• Many important systems fall in this class

• Many tricks involved in modeling - automatic systems available to convert

to consistent form

• Optimization problem becomes a mixed-integer linear / quadratic program

• NP-hard (exponential time to solve)

• Advanced commercial solvers available

• MPC theory (invariance, stability, etc) applies
• Computing invariant sets is usually extremely difficult

• Computing the optimal solution is extremely difficult (sub-optimal ok)

MPC Ch. 12 - Hybrid MPC 42 4 – Explicit MPC of Hybrid Systems
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Lecture Take Homes

1. MPC relies on a model, but models are far from perfect

2. Noise and model inaccuracies can cause:
• Constraint violation

• Sub-optimal behaviour can result

3. Persistent noise prevents the system from converging to a single point

4. Can incorporate some noise models into the MPC formulation
• Solving the resulting optimal control problem is extremely difficult

• Many approximations exist, but most are very conservative

MPC Ch. 13 - Robust MPC 3



Examples of Common Uncertainty Models
Additive Bounded Noise

g(x , u, w ; ✓) = Ax + Bu + w , w 2W

A, B known, w unknown and changing with each sample

• Dynamics are linear, but impacted by random, bounded noise at each time
step

• Can model many nonlinearities in this fashion, but often a conservative
model

• The noise is persistent, i.e., it does not converge to zero in the limit

The next lectures will focus on uncertainty models of this form.
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Goals of Robust Constrained Control
Uncertain constrained linear system

x+ = Ax + Bu + w (x , u) 2 X ,U w 2W

Design control law u = (x) such that the system:

1. Satifies constraints : {xi} ⇢ X , {ui} ⇢ U for all disturbance realizations

2. Is stable: Converges to a neighbourhood of the origin

3. Optimizes (expected/worst-case) “performance”

4. Maximizes the set {x0 |Conditions 1-3 are met}

Challenge: Cannot predict where the state of the system will evolve
We can only compute a set of trajectories that the system may follow

Idea: Design a control law that will satisfy constraints and stabilize the system
for all possible disturbances
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Uncertain State Evolution
Given the current state x0, the model x+ = Ax + Bu + w and the set W,
where can the state be i steps in the future?

x0 ;YHQLJ[VY`�MVY w = 0

4HU`�WVZZPISL
[YHQLJ[VYPLZ �i(x0,u,w)

Define �i (x0,~u, ~w) as the state that the system will be in at time i if the state
at time zero is x0, we apply the input ~u := {u0, . . . , uN�1} and we observe the
disturbance ~w := {w0, . . . , wN�1}.
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Uncertain State Evolution
Nominal system

x+ = Ax + Bu

x1 = Ax0 + Bu0

x2 = A2x0 + ABu0 + Bu1

...

xi = Aix0 +
i�1X

k=0

AkBui�k

Uncertain system

x+ = Ax + Bu + w , w 2W

�1 = Ax0 + Bu0 + w0

�2 = A2x0 + ABu0 + Bu1 + Aw0 + w1

...

�i = Aix0 +
i�1X

k=0

AkBui�k +
i�1X

k=0

Akwi�k

�i = xi +
i�1X

k=0

Akwi�k

Uncertain evolution is the nominal system + offset caused by the disturbance
(Follows from linearity)
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Uncertain State Evolution

x0 ;YHQLJ[VY`�MVY w = 0

4HU`�WVZZPISL
[YHQLJ[VYPLZ �i(x0,u,w)

xi

�i(x0,u,w) = xi +
i�1X

k=0

Akwk

MPC Ch. 13 - Robust MPC 17 2 – Impact of Bounded Additive Noise



Outline

1. Uncertainty Models

2. Impact of Bounded Additive Noise

3. Robust Open-Loop MPC

4. Closed-Loop Predictions

5. Tube-MPC

6. Nominal MPC with noise

MPC Ch. 13 - Robust MPC 48 3 – Robust Open-Loop MPC



Robust Constraint Satisfaction

x0

Xf

,UZ\YL� [OH[� HSS� WVZZPISL� Z[H[LZ
�N(x0,u,w) HYL�JVU[HPULK�PU�[OL
[LYTPUHS�ZL[�

,UZ\YL� [OH[� HSS� WVZZPISL� Z[H[LZ
�i(x0,u,w) ZH[PZM`� Z`Z[LT� JVU�
Z[YHPU[Z X�

X

The idea: Compute a set of tighter constraints such that if the nominal
system meets these constraints, then the uncertain system will too.
We then do MPC on the nominal system.
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Robust Constraint Satisfaction
Goal: Ensure that constraints are satisfied for the MPC sequence.

x0

Xf

;PNO[LULK�JVUZ[YHPU[Z�MVY �1

x1

Require: xi 2 X  
⇥
I A0 . . . Ai�1⇤Wi and

Nominal xi satisfies tighter constraints ! Uncertain state does too
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Putting it Together
Robust Open-Loop MPC

min
~u

N�1X

i=0

l(xi , ui ) + Vf (xN)

subj. to xi+1 = Axi + Bui

xi 2 X  AiWi

ui 2 U

xN 2 X̃f

where Ai :=
⇥
A0 A1 . . . Ai⇤ and X̃f is a robust invariant set for the

system x+ = (A + BK )x for some stabilizing K .

We do nominal MPC, but with tighter constraints on the states and inputs.

We can be sure that if the nominal system satisfies the tighter constraints,
then the uncertain system will satisfy the real constraints.

) Downside is that AiWi can be very large
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MPC as a Game
Two players: Controller vs Disturbance

x+ = f (x , u) + w

1. Controller chooses his move u

2. Disturbance decides on his move w after seeing the controller’s move

What are we assuming when making robust predictions?

1. Controller chooses a sequence of N moves in the future {u0, . . . , uN�1}

2. Disturbance chooses N moves knowing all N moves of the controller

We are assuming that the controller will do the same thing in the future no
matter what the disturbance does!

Can we do better?
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Closed-Loop Predictions
What should the future prediction look like?

1. Controller decides his first move u0

2. Disturbance chooses his first move w0

3. Controller decides his second move u1(x1) as a function of the first
disturbance w0 (recall x1 = Ax0 + Bu0 + w0)

4. Disturbance chooses his second move w1 as a function of u1

5. Controller decides his second move u2(x2) as a function of the first two
disturbances w0, w1

6. . . .
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Closed-Loop Predictions
We want to optimize over a sequence of functions {u0, µ1(·), . . . , µN�1(·)},
where µi (xi ) : Rn

! Rm is called a control policy, and maps the state at time
i to an input at time i .

Notes:
• This is the same as making µ a function of the disturbances to time i ,

since the state is a function of the disturbances up to that point
• The first input u0 is a function of the current state, which is known.

Therefore it is not a function, but a single value.

The problem: We can’t optimize over arbitrary functions!
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Closed-Loop MPC
A solution: Assume some structure on the functions µi

Pre-stabilization µi (x) = Kx + vi
• Fixed K , such that A + BK is stable
• Simple, often conservative

Linear feedback µi (x) = Kix + vi
• Optimize over Ki and vi
• Non-convex. Extremely difficult to solve...

Disturbance feedback µi (x) =
Pi�1

j=0 Mijwj + vi
• Optimize over Mij and vi
• Equivalent to linear feedback, but convex!
• Can be very effective, but computationally intense.

Tube-MPC µi (x) = vi + K (x � x̄i )
• Fixed K , such that A + BK is stable
• Optimize over x̄i and vi
• Simple, and can be effective

We will cover tube-MPC in this lecture.
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Tube-MPC

x+ = Ax + Bu + w (x , u) 2 X ⇥ U w 2W

The idea: Seperate the available control authority into two parts

1. A portion that steers the noise-free system to the origin z+ = Az + Bv

2. A portion that compensates for deviations from this system
e+ = (A + BK )e + w

We fix the linear feedback controller K offline, and optimize over the nominal
trajectory {v0, . . . , vN�1}, which results in a convex problem.

0Further reading: D.Q. Mayne, M.M. Seron and S.V. Rakovic, Robust model predictive control of
constrained linear systems with bounded disturbances, Automatica, Volume 41, Issue 2, February 2005
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System Decomposition
Define a ‘nominal’, noise-free system:

zi+1 = Azi + Bvi

Define a ‘tracking’ controller, to keep the real trajectory close to the nominal

ui = K (xi � zi ) + vi

for some linear controller K , which stabilizes the nominal system.

Define the error ei = xi � zi , which gives the error dynamics:

ei+1 = xi+1 � zi+1

= Axi + Bui + wi � Azi � Bvi

= Axi + BK (xi � zi ) + Bvi + wi � Azi � Bvi

= (A + BK )(xi � zi ) + wi

= (A + BK )ei + wi
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Error Dynamics
Bound maximum error, or how far the ‘real’ trajectory is from the nominal

ei+1 = (A + BK )ei + wi wi 2W

Dynamics A + BK are stable, and the set W is bounded, so there is some set
E that e will stay inside for all time.

We want the smallest such set (the ‘minimal invariant set’)

We will cover how to compute this set later
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Tube-MPC : The Idea

z0

zi

We want to ignore the noise and plan the nominal trajectory

MPC Ch. 13 - Robust MPC 70 5 – Tube-MPC



Tube-MPC : The Idea

zi

x0

xi

z0e0

(May be!
anywhere!
in the set)

E � zi

We know that the real trajectory stays ‘nearby’ the nominal one: xi 2 zi � E

because we plan to apply the controller ui = K (xi � zi ) + vi in the future
(we won’t actually do this, but it’s a valid sub-optimal plan)
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Tube-MPC : The Idea

zi

xi

z0e0

(May be!
anywhere!
in the set)

State constraints

x0
E � zi

We must ensure that all possible state trajectories satisfy the constraints
This is now equivalent to ensuring that zi � E ⇢ X

(Satisfying input constraints is now more complex - more later)
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Tube-MPC
What do we need to make this work?
• Compute the set E that the error will remain inside
• Modify constraints on nominal trajectory {zi} so that zi � E ⇢ X and

vi 2 U  KE
• Formulate as convex optimization problem

. . . and then prove that
• Constraints are robustly satisfied
• The closed-loop system is robustly stable
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Noisy System Trajectory
Given the nominal trajectory zi , what can the noisy system trajectory do?

xi = zi + ei

Don’t know what error will be at time i , but it will be in the set E

Therefore, xi can only be up to E far from zi

xi 2 zi � E = {zi + e | e 2 E}

zi

xi

z0e0

(May be!
anywhere!
in the set)

State constraints

x0
E � zi
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Constraint Tightening

Goal: (xi , ui ) 2 X ⇥ U for all {w0, . . . , wi�1} 2Wi

We want to work with the nominal system z+ = Az + Bv but ensure that the
noisy system x+ = Ax + Bu + w satisfies the constraints.

Sufficient condition:

zi � E ✓ X ( zi 2 X  E

The set E is known offline - we can compute the constraints X  E offline!

A similar condition holds for the inputs:

ui 2 KE � vi ⇢ U ( vi 2 U  KE

MPC Ch. 13 - Robust MPC 84 5 – Tube-MPC



Tube-MPC Problem Formulation
Tube-MPC

Feasible set: Z(x0) :=

8
>>>>>><

>>>>>>:

~z ,~v

������������

zi+1 = Azi + Bvi i 2 [0, N � 1]

zi 2 X  E i 2 [0, N � 1]

vi 2 U  KE i 2 [0, N � 1]

zN 2 Xf

x0 2 z0 � E

9
>>>>>>=

>>>>>>;

Cost function: V (~z ,~v) :=
N�1X

i=0

l(zi , vi ) + Vf (zN)

Optimization problem: (~v ?(x0),~z?(x0)) = argmin
~v ,~z

{V (~z ,~v) | (~z ,~v) 2 Z(x0)}

Control law: µtube(x) := K (x � z?0 (x)) + v ?
0 (x)

• Optimizing the nominal system, with tightened state an input constraints
• First tube center is optimization variable ! has to be within E of x0
• The cost is with respect to the tube centers
• The terminal set is with respect to the tightened constraints
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Putting it all together: Tube MPC
To implement tube MPC:

— Offline —
1. Choose a stabilizing controller K so that kA + BKk < 1

2. Compute the minimal robust invariant set E = F1 for the system
x+ = (A + BK )x + w , w 2W1

3. Compute the tightened constraints X̃ := X  E , Ũ := U  E

4. Choose terminal weight function Vf and constraint Xf satisfying
assumptions on slide 88

— Online —
1. Measure / estimate state x

2. Solve the problem (~v ?(x),~z?(x)) = argmin~v ,~z {V (~z ,~v) | (~z ,~v) 2 Z(x)}
(Slide 86)

3. Set the input to u = K (x � z?0 (x)) + v ?
0 (x)

1Note that it is often not possible to compute the minimal robust invariant set, as it may
have an infinite number of facets. Therefore, we often take an invariant outer approximation.
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Example
System dynamics

x+ =


1 1
0 1

�
x +


1

0.5

�
u + w W := {w | |w1|  0.01, |w2|  0.1}

Constraints:

X := {x | kxk1  1} U := {u | kuk  1}

Stage cost is:

l(z , v) := zi
>Qzi + vi

>Rvi

where

Q :=


1 0
0 1

�
R := 10
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Offline Design - Compute Minimal Invariant Set

1. Choose a stabilizing controller K so that kA + BKk < 1

2. Compute the minimal robust invariant set E = F1 for the system
x+ = (A + BK )x + w , w 2W

We take the LQR controller for Q = I ,R = 1:

K :=
⇥
�0.5198 �0.9400

⇤

−0.4 −0.2 0 0.2 0.4−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Evolution of the system
x+ = (A + BK )x + w for
x0 =

⇥
�0.1 0.2

⇤T
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Offline Design - Tighten State Constraints

−5 0 5−3

−2

−1

0

1

2

Blue : Original constraint set X
Red : Error set E

Green : Tightened constraints X  E
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Tubes - Example

−5 0 5−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x 2
Initial state

Planned tube trajectory

Tube centers

MPC Ch. 13 - Robust MPC 101 5 – Tube-MPC



Tubes - Example
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Tubes - Example
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Tubes - Example
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Tubes - Example
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Tubes - Example
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Tubes - Example

−5 0 5−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x 2

MPC Ch. 13 - Robust MPC 107 5 – Tube-MPC



Tube MPC - Summary
Idea:
• Split input into two parts: One to steer system (v), one to compensate

for the noise (Ke)

u = Ke + v

• Optimize for the nominal trajectory, ensuring that any deviations stay
within constraints

Benefits:
• Less conservative than open-loop robust MPC (we’re now actively

compensating for noise in the prediction)
• Works for unstable systems
• Optimization problem to solve is simple

Cons:
• Sub-optimal MPC (optimal is extremely difficult)
• Reduced feasible set when compared to nominal MPC
• We need to know what W is (this is usually not realistic)
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Robust MPC for Uncertain Systems - Summary
Idea
• Compensate for noise in prediction to ensure all constraints will be met

Cons
• Complex (some schemes are simple to implement, like tubes, but complex

to understand)
• Must know the largest noise W
• Often very conservative
• Feasible set may be small

Benefits
• Feasible set is invariant - we know exactly when the controller will work
• Easier to tune - knobs to tradeoff robustness against performance
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